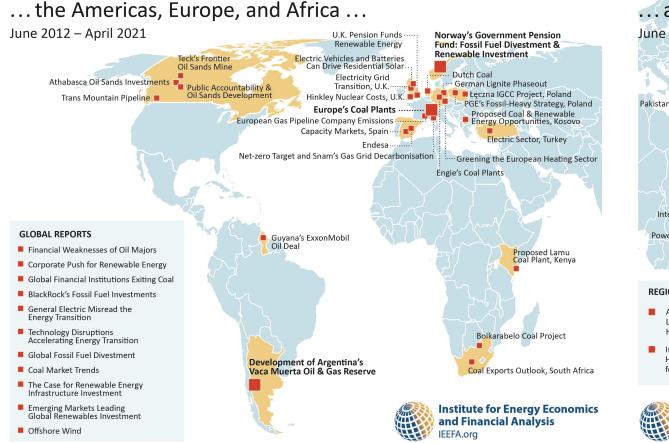
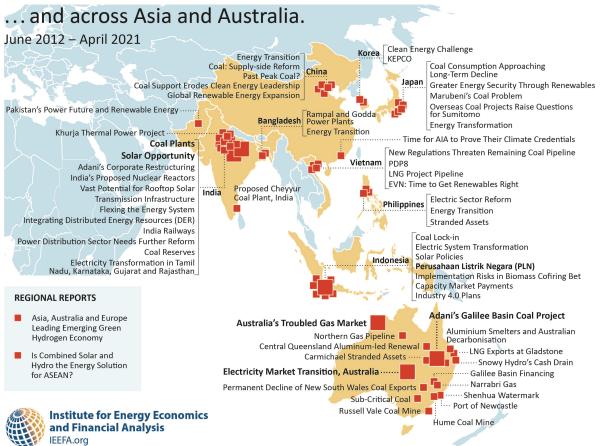


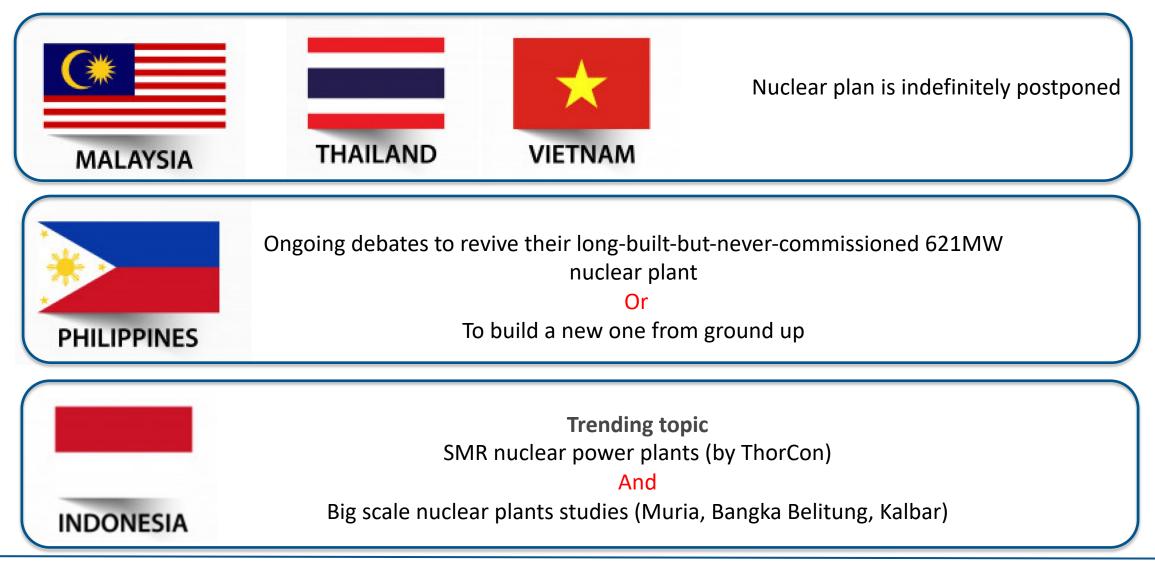
Tackling Indonesia's Nuclear Power Euphoria

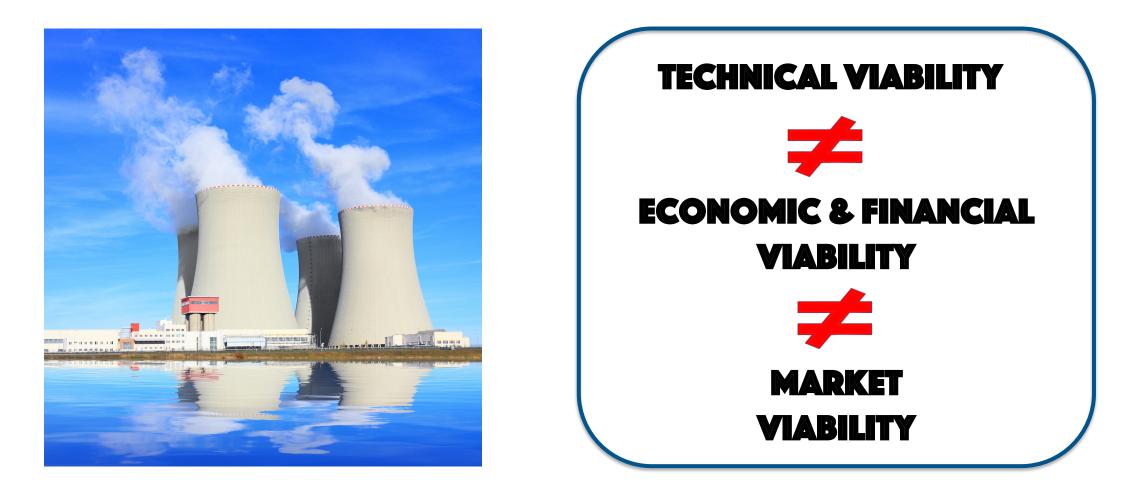

How to Reconcile Nuclear's Technical Promise With Market Realities


ELRIKA HAMDI, Energy Finance Analyst June 2021

Institute for Energy Economics and Financial Analysis IEEFA.org

Snapshot of IEEFA




Ħ

What about in South East Asia?

A deep and honest discussion about the role of nuclear power in Indonesia

Three Fundamental Challenges TECHNICAL VIABILITY

Types of Nuclear Reactors

Operable Nuclear Power Reactors at Year-End 2019

	Boiling water	Fast neutron	Gas-cooled	Light water graphite- moderated	Pressurized heavy water	Pressurized	
	reactor	reactor	reactor	reactor	reactor	water reactor	Total
Africa						2	2
South America					3	2	5
Eastern Europe and Russia		2		13	-	38	53
North America	34				19	64	117
Western and Central Europe	10		14		2	102	128
Asia	21				24	92	137
Total	65	2	14	13	48	300	442

PWR dominates, **BWR** comes second – both are **LWR**s.

Meanwhile **only 1 SMR currently operating** - 70 MW Akademik-Lomonosov in Russia.

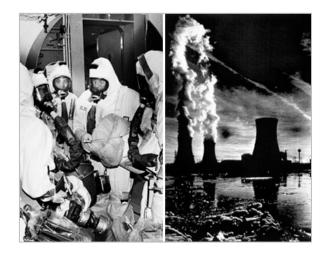
Source: World Nuclear Performance Report 2020

Safety, security and safeguard remains the biggest challenge

A Non-Exhaustive List of Publicly Acknowledged Accidents or Serious Incidents Resulting in Nuclear Reactor Shutdowns

Country	Reactor	Туре	MWe Net	Years Operable	Shutdown
Germany	Greifwald 5	VVER-440/-213	408	0,5	11/1989
Germany	Gundremmingen A	BWR	237	10	01/1977
Japan	Fukushima Daiichi 1	BWR	439	40	03/2011
Japan	Fukushima Daiichi 2	BWR	760	37	03/2011
Japan	Fukushima Daiichi 3	BWR	760	35	03/2011
Japan	Fukushima Daiichi 4	BWR	760	32	03/2011
Japan	Monju	Prot FNR	246	1	2016
Slovakia	Bohunice A1	Prot GCHWR	93	4	1977
Spain	Vandellos 1	GCR	480	18	mid-1990
Switzerland	St Lucens	Exp GCHWR	6	3	1966
Ukraine	Chernobyl 4	RBMK LWGR	925	2	04/1986
USA	Three Mile Island 2	PWR	880	1	03/1979

Based on the current installed capacity of 440 active reactors globally, a major disaster might happen once every 10 to 20 years.


Safety, security and safeguard remains the biggest challenge

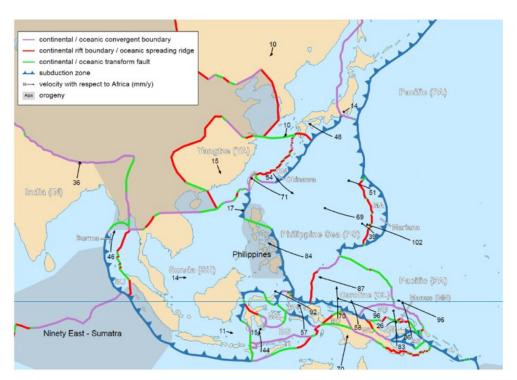
Nuclear accidents

Three Mile Island

Chernobyl

Fukushima

Cost **US\$ 1 billion** for 14 years


Cost US\$ 700 billion for 30 years

Cost US\$ 200 billion for 30 years

These accidents have taken place <u>despite the fact</u> that the nuclear industry has been subject to high-level governance and oversight at global and country levels

Geography and Geology

Tectonic Plates in Southeast Asia

SEA region:

- RING OF FIRE = seismic risk
- 452 volcanoes 28% are active
- SEA is home to 90% of the world's earthquakes

Indonesia

- 127 active volcanoes
- 5,000 6,000 earthquakes every year
- At least 10 tsunamis
- Increasing numbers of massive floods due to climate change
- Risk of forest fires

The risks associated with geological instability needs to be assessed not only for operational safety, but also for the safe disposal of nuclear waste

The Legacy Nuclear Waste Disposal Issue

	VLLW	LLW	ILW	HLW
Africa	7,000	20,000	1,000	-
Eastern Europe	15,000	2,479,000	101,000	7,000
Western Europe	224,000	355,000	269,000	6,000
Far East	5,000	331,000	4,000	-
North America	2,105,000	248,000	84,000	8,000
Latin America	-	37,000	-	-
Middle East and South Asia	-	3,000	-	-
South East Asia and Pacific	-	5,000	1,000	-
Global Total	2,356,000	3,478,000	460,000	22,000

Solid Radioactive Waste in Storage (m3), as of 31 December 2013

No country has found a workable, economically viable permanent solution for nuclear waste disposal.

Finland is the closest with the Olkiluoto deep repository site, 400 m deep in a 2-billionyear-old igneous rock. Currently still under construction.

The Legacy Nuclear Waste Disposal Issue

What has been done so far by nuclear countries?

Storage

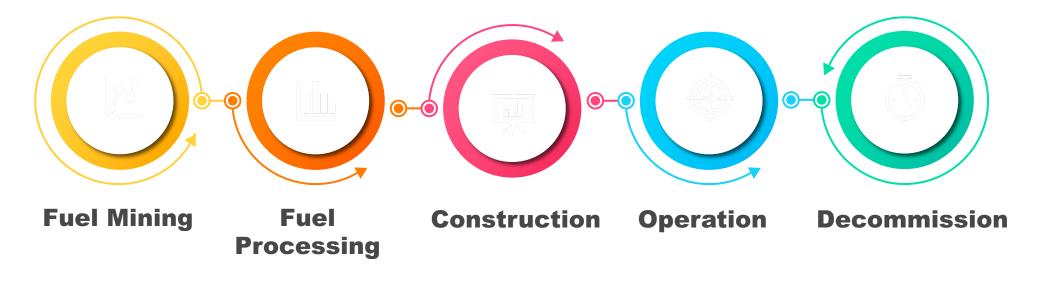
In storage pools or dry casks Some dry casks have started leaking toxic waste

Reprocess

To recover residual uranium and plutonium from spent fuel – in a closed fuel cycle 14% more expensive

Awaiting

With risks including technological malfunction, natural disaster, end-oflife costs, and terrorist attacks


Question for Indonesian policymakers:

Is there any stable geological structure several hundred meters below ground that exists in Indonesia?

Greenhouse Gas Emissions From Nuclear Power Plants May Be Comparable to Hydro and Wind Power, but Nuclear Still Comes With Radiological Risk

Life Cycle Analysis to Calculate GHG

For nuclear, the emissions appear mostly during fuel mining and processing, during operation, and spent fuel reprocessing

Greenhouse Gas Emissions From Nuclear Power Plants May Be Comparable to Hydro and Wind Power, but Nuclear Still Comes With Radiological Risk

Life Cycle Assessment of Power Generation Technologies

Technology	Lifecycle Emission kg CO ² e/MWh	
Hard coal	660-1050	
Lignite coal	800 - 1300	
Natural gas	380 - 1000	
Oil	530 - 900	
Biomass	8.5 - 130	
Hydropower	2-20	
Solar energy	13 - 190	
Wind	3 - 41	
Nuclear (Turconi, Boldrin & Astrup)	3-35	
Nuclear (Benjamin K. Sovacool)	1.4 - 288	

Sources: Renewable and Sustainable Energy Reviews 2013. Turconi, R., Boldrin, A., & Astrup, T.

GHG of nuclear may be comparable with hydro and wind

BUT

It still comes with radiological risk that other renewable sources do not have!

New Gen-IV Technology – a Work in Progress

Supporter VS Opponents

Smaller & modular

Easily deployed, increase construction efficiency, reduce capital costs.

Faster construction time

Can be built off-site and shipped to site.

Safer technology

Self-contained reactors, can shut itself down, remain cool for an unlimited time.

New & untested

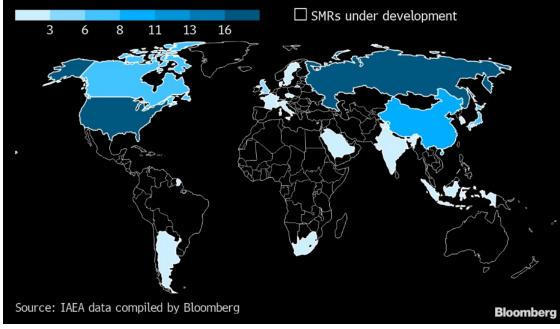
Require long & rigorous oversights – high risk on construction delays

Unproven claim for safety & cost issues

Economic of scale will be limited due to each reactor needing its own control & safety system. This will increase costs.

Still carry unresolved waste issue

The SMR technology still produces high-level long-lived radioactive waste



New Gen-IV Technology – a Work in Progress

SMR Global Landscape led by the US and Russia

SMR Global Landscape

The U.S. and Russia are leading small modular reactor development

Sources: Bloombers

NuScale Power is the closest to bringing the SMR technology across the finish line.

- ✓ Backed by Fluor Corp, a major US EPC company
- Design certification submitted in 2017, and still not yet certified by the US NRC
- ✓ Estimated cost has ballooned from US\$ 3 billion in 2015 to US\$ 6.1 billion in 2020.
- $\checkmark\,$ Relies upon subsidies from the US taxpayers

How about ThorCon?

Reliability of Fuel Supply

World Uranium Resources

Countries	Tonnes	% of the World
Australia	1,818,300	30%
Kazakhstan	842,200	14%
Canada	514,400	8%
Russia	485,600	8%
Namibia	442,100	7%
South Africa	322,400	5%
China	290,400	5%
Niger	280,000	5%
Brazil	276,800	5%
Uzbekistan	139,200	2%

Source: World Nuclear Association

World Thorium Resources

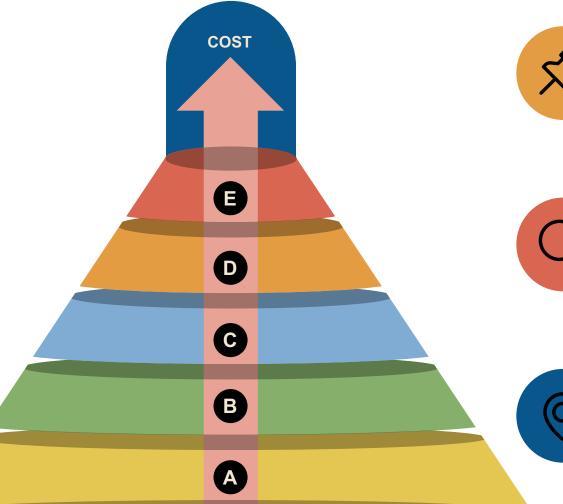
Countries	Tonnes	% of the World
India	846,000	13.3%
Brazil	632,000	9.9%
Australia	595,000	9.3%
USA	595,000	9.3%
Egypt	380,000	5.9%
Turkey	374,000	5.8%
Venezuela	300,000	4.7%
Canada	172,000	2.7%
Russia	155,000	2.4%
South Africa	148,000	2.3%

Three Fundamental Challenges ECONOMIC AND FINANCIAL VIABILITY

The Complex Nature of Nuclear Power Drives Upside Cost Risks

A. Inaccurate Cost Estimate

Underestimating construction time schedule.


B. Human Resources

Specific design requirements need highly qualified specialists

C. Strict Licensing

Licensing Longer time needed, especially for the non-

standardized design

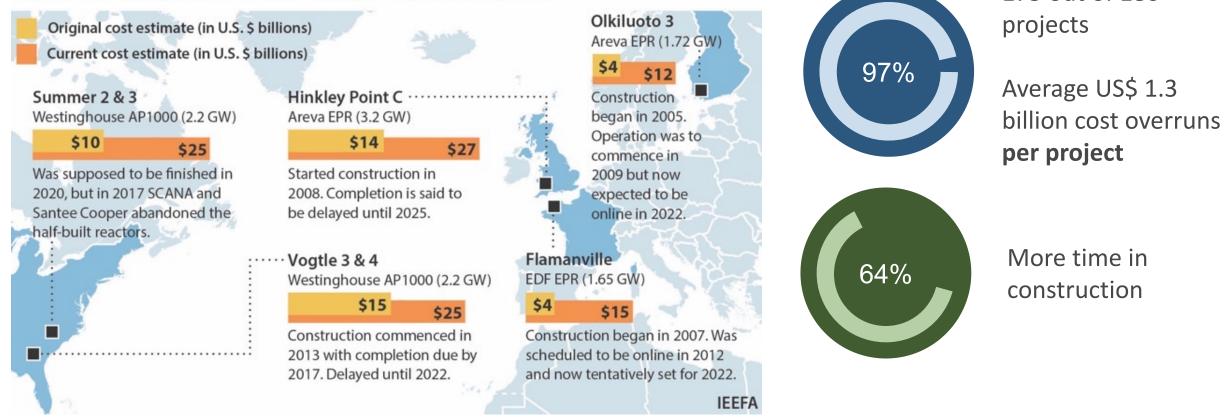
D. Strict Safety Regulations

Sometimes require additional passive-control system, high insurance premium, and additional security measures

E. Compounding Financing Cost

As a result of construction delays.

Untimely & expensive, especially in countries with inconsistent policies.



Tackling Indonesia's Nuclear Power Euphoria

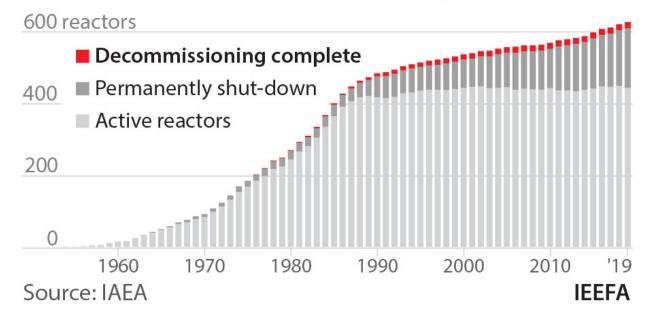
The Complex Nature of Nuclear Power Drives Upside Cost Risks

Nuclear Unit Construction Projects See Cost Overruns and Time Delays

Many nuclear units under construction in Europe and the U.S. have seen cost estimates double or triple. Projects have also experienced substantial delays in expected completion.

175 out of 180

The Complex Nature of Nuclear Power Drives Upside Cost Risks


Don't forget the growing cost of insurance!

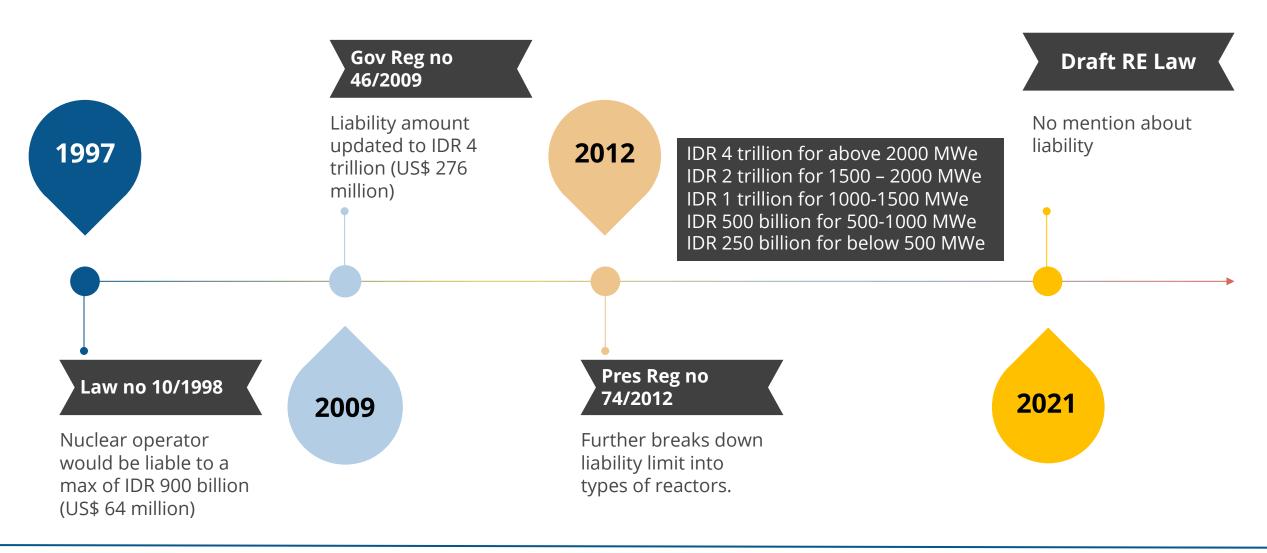
The Cost of Decommissioning and Nuclear Waste Disposal is still a Mystery

Nuclear Permanent Waste Costs a Big Unknown

Incalculable risks due to limited global experience

Globally, only 20 units out of 189 reactors have been fully decommissioned

Cost of decommissioning:

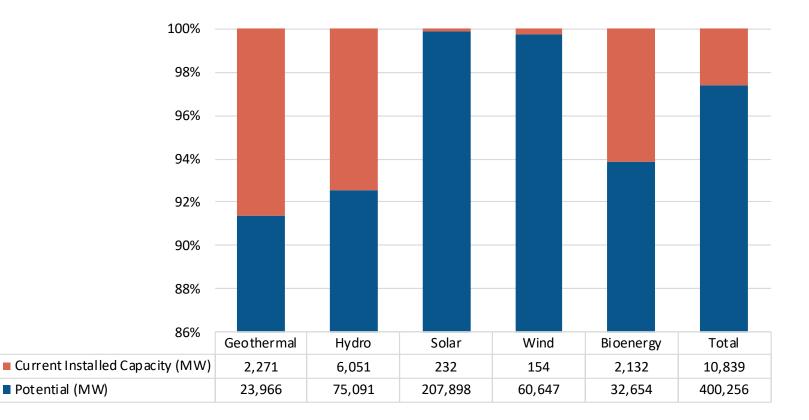

- **France** EDF estimates the need for €79.4 billion in 2012. By 2016, EDF has set aside €36 billion.
- **Germany** sets aside €23.6 billion for interim storage, €38 billion for decommissioning 17 reactors

Cost of permanent waste disposal:

- Finland US\$ 555 million for construction of Olkiluoto, and US\$ 3.9 billion to operate for 100 years
- **US** at least US\$ 6 billion to address the highlevel waste from the Manhattan Project

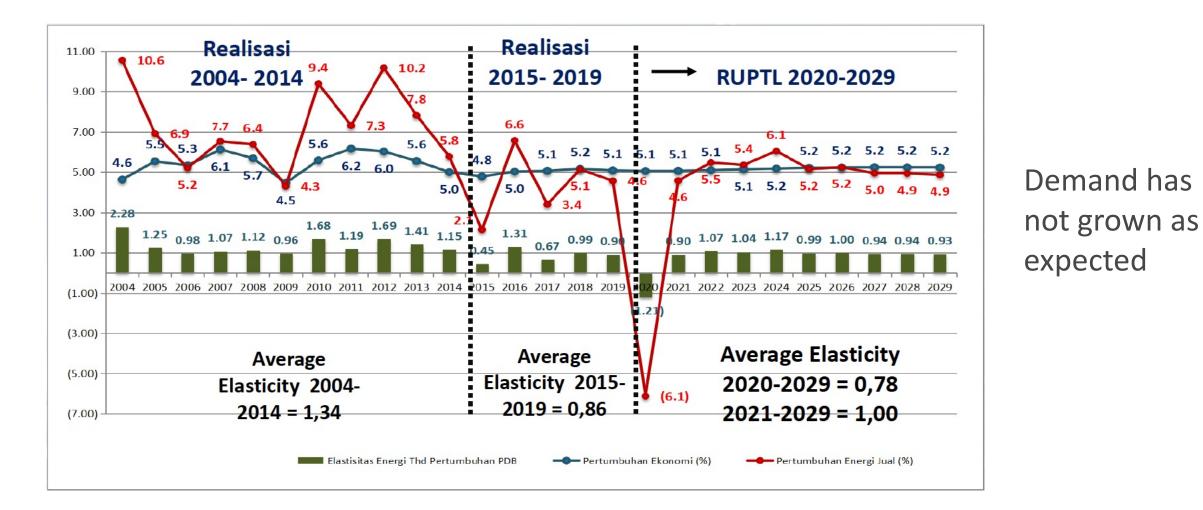
Indonesian Regulation on Nuclear Accident Liability – comes with Caveats

Three Fundamental Challenges MARKET VIABILITY

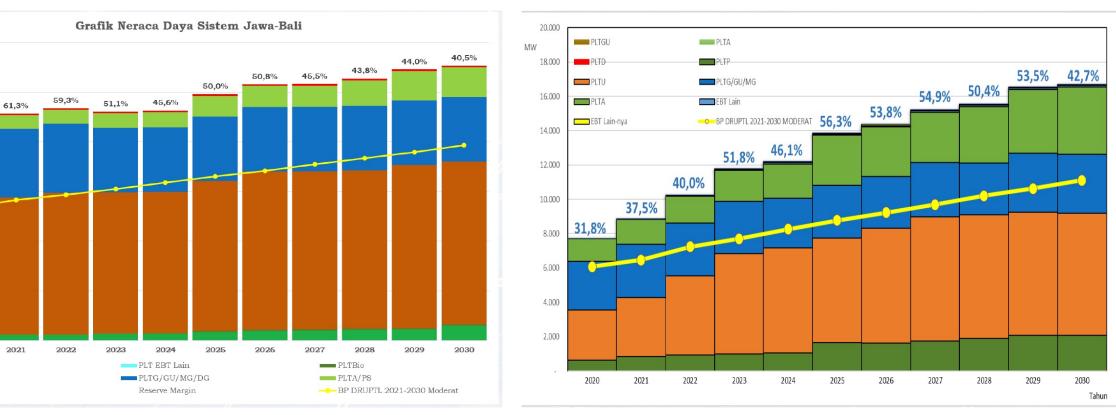

Competition from Renewables

2.5%

Of RE potential have been utilized


Nuclear has to compete with:

- Mature technology like hydro
- Technical knowledge & golden site of hydro
- Declining cost curves of solar & wind & storage
- Gov-backed geothermal exploration
- PLN push for biomass cofiring
- New unexplored potential: offshore wind & ocean power


PLN's Market Reality

Institute for Energy Economics and Financial Analysis IEEFA.org

PLN's Market Reality

Oversupply in Java-Bali grid

Oversupply in Sumatera grid

"Risk of having 40-60% of reserve margin in its system - approx. 7GW of unused power by 2029" - Minister of Energy & Mineral Resources

60.000

50.000

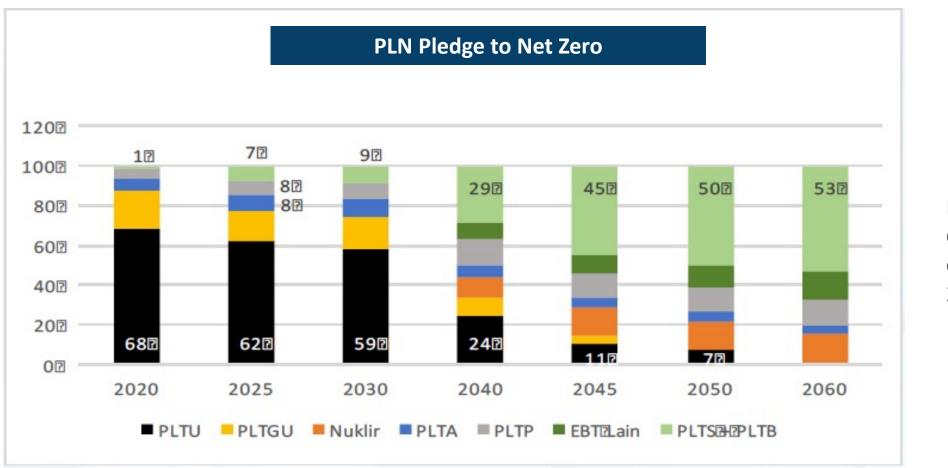
40.000

¥ 30.000

20.000

10.000

43,7%


2020

PLTP

PLTD

PLN's Market Reality

Nuclear only comes online in 2040

CONCLUSION

POTENTIAL

Baseload power Promise of new Gen-IV SMR Low GHG emissions

OPPORTUNITY

SMR technology – untested PLN's market reality Competition from renewables

UNADDRESSED RISKS & ISSUES

Safety, security & safeguard Geographical & Geological Challenges Reliability of Fuel Supply Waste Disposal

> Radiological risk Third party liability insurance Costs overruns, construction delays Decommissioning & waste disposal cost

UNTIL THESE ISSUES ARE ADDRESSED, NET ZERO SCENARIO SHOULD BE REALISTIC AND CONSIDER OPTIONS THAT ARE ALREADY READILY AVAILABLE WITH LESS COST, LESS RISK, AND LESS FUTURE LIABILITIES