and Financial Analysis

The carbon dioxide disposal chain: Elements, goals and risks

J. Grant Hauber Strategic Energy Finance Advisor, Asia

Kuala Lumpur, Malaysia September 4, 2024

What are the components of the CCS disposal chain?

CCS/CCUS: some common understandings

"U" in CCUS =	"Utilization" is for enhanced oil or gas production in >95% of the cases. Other CO_2 utilization options lack scale.
"Storage" =	CO_2 is forced into pore spaces, not stored in caverns. Goal is to trap or chemically bond CO_2 with rock.
"U" vs "S" =	If you are 'utilizing' CO_2 , you are not storing it. If you are 'storing' CO_2 , you are trying to dispose of it.
How disposed? =	CO_2 is compressed into a "supercritical state", somewhere between liquid and gas, its densest form. This is injected at high pressure (~700atm/10,000psi) a minimum of 800m below the surface.

CCS disposal is not one activity, but a string of separate projects

What are the performance and risks characteristics of the CCS disposal chain?

CO₂ Capture: Real-world data shows carbon capture efficacy rates vary widely, none even close to 90%

Real-World CO₂ Capture

100% carbon capture

95% or higher: Industry claims for CO₂ capture

IEEFA. Blue Hydrogen: not clean, not low carbon, not a solution. September 2023 [updated November 2023].

CO₂ purity requirements for CCS are high

Contaminants change CO₂ properties

- Accelerated corrosion
- Changes liquid-gas point, density

CO_2 needs pre-processing to remove gasses, H_2S , heavy metals

 Filtration byproducts need proper disposal

Emerging risk issue: mixed CO_2 quality CO_2 "hubs" propose to accept a wide range of CO_2 effluents, much like a garbage dump

- These gases must be homogenized
- Increased risk to storage integrity, equipment

	CO ₂ Grade	Purity	Other Gases
	Research	99.999%	<0.001%
Injection Grade	Super-critical fluid	99.998%	<0.002%
Pipeline Grade	Laser	99.95%	<0.05%
	Food & Beverage	99.9%	<0.1%
	Bone Dry	99.8%	<0.2%
	Medical	99.5%	<0.5%
	Industrial	99.5%	<0.5%

Source: adapted from CO2 Meter Gas Measurement Specialists. Carbon Dioxide Purity Grade Chart. February 22, 2024.

CO₂ Pipelines

Only 14,500 km of CO₂ pipelines exist

- 8,000 km of those in the US
- Comparison: 2.4 million km of fossil gas pipelines worldwide, 1.6 m km of which are in the US

Challenging permitting, extensive implementation timeframes

• CO₂ pipelines structurally must be underground

CO₂ pipelines need higher quality/higher cost alloy steels due to corrosion potential

Moisture of only 50ppm can create acids

• Serious pipe corrosion can take place within hours

CO₂ is heavier than air

 Leaks displace oxygen at ground level, high human risk

Denbury CO₂ pipeline rupture, Satartia, Mississippi, February 2020. Source: <u>Huffington Post</u>, April 2021.

CO₂ Shipping

Vessels do not currently exist, must be built

 Design considerations limit carriers to small sizes – e.g. 7,500m³ for Norway's Northern Lights

Higher CO₂ purity needed

• 99.9%, <30ppm water

"Boil-off" of liquid CO₂

• Gasifies at 0.15% per day; ships traveling long distances may require reliquification plants

Design safety considerations

- Specialty materials and designs
- Cannot be used to carry any other commodities

Challenging economics

- Small scale and specialty operating requirements mean high cost per tonne-km.
- Specially designed and configured ports

Cross-border carbon accounting issues

Subsurface CO₂ injections are unlike oil & gas industry equivalents

- CO₂ is injected as a super-critical fluid, its highest density
- Super-critical CO₂ must be ultra-high purity, >99.998%, meaning
 <3ppm water
- Well design is much more stringent when handling CO₂
 - Specialized alloy drill casings, gaskets and high specification cements
- Wellhead fittings and equipment need to be specifically designed and certified to handle CO₂
 - CO₂ fittings must withstand higher temperature and pressure ranges than oil and gas standards
- Much of these fittings and equipment remain in R&D stage
- Maintenance cycles shorter, more critical

CCU is for hydrocarbon production, not CO₂ storage

Subsurface CO₂ storage risks abound and can present at any time

CO₂ behavior won't be known until it is put into the ground, regardless of prior survey, engineering or lab work that goes into site design and preparation

- CO₂ rejected by subsurface geochemistry
- Phase change from supercritical fluid to gas
- Finds undetected faults or subsurface anomalies
- Finds abandoned wells
- Induces corrosion around well casings
- High pressures compromise storage geology
- Induced seismicity affecting surface
- Problems may materialize for many years
- CO₂ underground may not stabilize for decades or centuries, creating high risk, long-term liabilities

Even minor leakage rates undermine the permanent climate premise of CCS. CO₂ storage needs to be more like nuclear waste security with zero loss tolerance.

Q: How do scientists / operators know what is happening to CO₂ in storage?

A: Estimates and models

Only how much CO₂ was injected is known

Operators can only *estimate* how much CO₂ is retained

Verification measurements are made very infrequently

- Can be years in between
- Even then only a snapshot in time
- Large changes/movements can take place

CO₂ volume stored is estimated from data and models ...the models are getting better...

...but only monitoring of CO_2 possible. CO_2 cannot be controlled once in the ground.

www.ieefa.org

CO₂ storage monitoring, verification, regulation

Regulatory frameworks for storage are nascent

- What to monitor? How to monitor?
- Frequency of measurement? Details of reporting level of confidence?
- Regulator skills and staffing lacking to adequately interpret and intervene.

Operator responsibility period is very short

- In all cases, operator responsibility is far shorter than the physical stabilization period for CO₂
- State assumes all responsibility after the performance period expires,
 - Monitoring, protection, and intervention (if needed)

 and all costs

Contingency Responsibility Period Post CCS Site Closure

CCS disposal chain: cost and risk at every step, CO₂ still emitted

CCS disposal chain is highly challenged

1

Need for integrated disposal chain investment Project on project risk, multiple parties

responsible

Need for new designs and technologies for safety, security Many are still in R&D stage, or untested at commercial scale Disposal sites each are unique and possess great unknowns

3

Not certain how secure storage is, what to do if there are leaks Regulation and oversight are highly technical and long duration

4

CO₂ stabilization periods are likely far longer than operator's responsibility 5

Financial economics are challenged due to lack of clear carbon price

CO₂ is effectively a waste product of little value yet incurs high costs

Institute for Energy Economic and Financial Analysis

Norway's Sleipner and Snøhvit CCS: Industry models or cautionary tales?

Unexpected subsurface geology developments in the two projects call into question the world's offshore CO₂ storage ambitions

Grant Hauber, Energy Finance Analyst

Thank you!

J. Grant Hauber Strategic Energy Finance Advisor, Asia ghauber@ieefa.org

Institute for Energy Economics and Financial Analysis www.ieefa.org

Support Materials Subsea Storage

Sleipner: 8 CO₂ storage layers quickly become 9

- Original geophysics concept: CO₂ would gradually percolate up through several shaly layers over a period of many years
- Configuration identified through preliminary seismic studies, calculations
- Instead, in less than three years, CO₂ moved all the way to shallowest caprock
- CO₂ accumulated in a previously unidentified layer 9, circa 800m – risk of super-critical CO₂ becoming gaseous
- At some point after 2004, this accumulation grew large and began migrating west towards the UK border
- The horizontal boundaries of Layer 9 remain unknown; no way to stop movement

Source: Statoil ASA. Sleipner – 20 years of successful storage operations and key learning for future projects. IEEFA Skalmeraas. June 29, 2016.

And the shallow plume keeps moving...

Snøhvit: Reduced storage capacity meant finding a new site

Original Plan

- Inject in safe formation underneath gas producing area
- Sufficient capacity for about 18 years of production
- Use time to find suitable follow-on storage space
- Switch over to new area once original layer is full

Original plan 12.6-14Mt + 8.4-10Mt Expected storage capacity Extra capacity needed identified during design to be found Indicative timeline 2018-2020 2008 -2030 2020 2021 Commence Identify Bring extra operations incremental capacity online operations storage capacity What actually happened 12.6-14Mt +8.4Mt 1.4 Extra capacity needed Actual Remedial to be found capacity capacity tapped encountered **Actual timeline** 2011-2015 2008 2011 2016 ~2030 Well New well drilled and backup 2010 intervention storage brought online Limited capacity Additional issue identified storage exploration advanced IEEFA

Remedial Plan

- Use a 'quick fix' layer for • storage to resume operations
- New layer only good for about • 4-6 years of operations, i.e. to ~2016
- Immediately prospect for new • CO₂ storage, starting 2011

End

- Invest in developing new well • and infrastructure, 2016
- Invested additional at least • US\$225 million

CO₂ storage conclusions, cautions

- Geologic variations on every site, thus each will be unique
 - > No one site is a template for the next
 - > The larger the site, the more chances for variations
- Even top-level science and engineering cannot know what will really happen to the storage site or CO₂ in it
- CO₂ underground can only be monitored, not controlled
- CO₂ can stay active for decades or centuries, thus the risk of loss containment remains
- A "minor leak" means CO₂ abatement benefit is lost, and subsidies or credits are for nothing

Institute for Energy Economic and Financial Analysis

Norway's Sleipner and Snøhvit CCS: Industry models or cautionary tales?

Unexpected subsurface geology developments in the two projects call into question the world's offshore CO, storage ambitions

Grant Hauber, Energy Finance Analyst

Norway's Sleipner and Snøhvit: industry models or cautionary tales?

Contacts

- Author: Grant Hauber Strategic Energy Finance Advisor, Asia ghauber@ieefa.org
- Media: Alex Yu Editor and Communications Specialist ayu@ieefa.org

Institute for Energy Economics and Financial Analysis www.ieefa.org

Note: "Others" and "Other Fuel Shifts" refer to assorted lower carbon fuel switching, onsite energy provision derived from transformation of primary materials into useable energy, energy derived from wastes/byproducts, alternative fuels.

Source: IEA Net Zero Roadmap. September 2023, IPCC AR-6 Report, March 2023. Left Graphic: E3G adapted from IEA NZR. Right Graphic: IEEFA adapted from IPCC-AR6.

CCS

16.5% by

2050

NetZero